
r  C o n c o m i t a n t s  or S p h m r s  o f  T y p e  [3,/2, 1/2] 

in Space-Time' 

B.,  DODDS 

.,5#gtthewaat~ ~ ,  ~ i o &  lVatt University, Chamber~ Street, Edgnburgh 

~eived:  16 M~/ 

Abstract 

~r~4,JJe~it fm-m~ ~'~ th.e m a ~ s  g,~hic~ are D_qh~ear in tw~ ~ . r s  ,_~ g:~qre ~3[.L ~t2~ 
and ~.he concomitants ~-bich are quac~tic in a single sphaor of type [3/~ I/2] are o btai~eg; 
The duabten~rs, where they e.~L~L are ats~ giver~ 

The concomitants of higher-~rdet spinm-s can be obtaized i~, ~u exa~- simi~y rrmame~. 

l .  Introduction 

The definition of qa.;nors is de~nde~-~t upon the frame ofa~tic6mmuting 
maWices= i n  f ~ i m e n s i o n a l  space-time, where the metric is taken to 
have signature +2, lt:~ a~icommuting set of  matrices X, is taken as that 
used by J.Jttlewo~d (I972), namely 

., ] ] 
1 | ' I "" 

- - I j  1 J 

x~ = - i  - 1  , x o =  1 

,t-2 = I 
. . ~ t -  v 

--I 

0 . ! )  ,j' 
where 

2(o 2 = - I ,  

�9 o = - X o ,  ( i=  1,2,3). 

Defining the metric'tensor as 

_ !  (i ~ j ) ,  
&s = g~ = (i = j ;  r j---- 1, 2, 3), 

-(e =2 = o',, 
Copyright ~ 19'73 Plenum Pub{isbSng Come, any l.~mite~:. No par'~ ,~, t:.is pc.  tica.don_.may be ~ p r o d u ~ g  

ia-,~ r e t . ' - i ~ I  s y s t e m ,  o r  ~ n s m i t t e d .  i n  a~,~" fe<'r'a o r  b y  a n y  .rc~z.-d. cL-"c'~ronir ~ h a m ~ L  p h o z o -  

L i m i t e d .  - ~ " 

241 



2,*2 

it follow~ thz~ 

�9  he~ 

~nich will be taken as the meh~c of  spa~x~.time~ 
Corresponding to any Ixn_re.n~z t~msfrm~a~ion., L ~ y ,  as ~ven by 

f 

L ~ m  is a matrix/7, ~ basic spin m a ~ ,  which is unique apart from sign 
smrh tl~x 

where [a~ t] is a Lorentz -matrix whose elements thus ~t isfy the "-~.'--~,--~'" 
relations 

~ , -  s _  .j.~ (L2)  

A four-cowed re.al vector which, u~der L, is transformed by U, is called 
a basic spinor. By considering 1he dirc~ pvodnct cff a s,;rnp[e ~ensor of tyFr 
{n} and a oa~ic spmor, on removal of  the con~ actaeons: present, an i~educ~le 

�9 , . ' m . 

s y m m e m c  s p m o r  ol  t y p e  I~ + l / z ,  l l Z l  is u u - ~ m e u ,  . . . . . .  ~ ~ l n s  pOs~l~Ve 

integer. Explicit forms for such spinors have been given el~where (Dodds, 
1972). I f  V,~ ,, is an irreducible symmetric spiaor of  type In-: 2iL i! ~'~] 
it consists o~:.in + 3) !in ! 3 ! real four.vectors of  which just (n + 2) !/n !.2 ! are 
iedepc~d.en~ beca~a:~ of~hezer0 contractions X ~: ~q, ,.. ~, = 0 = ~ ~z Vq... ~. 

The concomitants which are bflmea: in two spinors of type In + 1/2, I/2] 
and the concomitants -~:;'~ w~,., ,  are quadra*dc ff~ a single spinor of t y p e  
[n + ! /Z  lf2], are of  .~ypes given by t l~  expansiorL:~ of the products 
In+  112, 1/2][n+ 112, i/2] and [ n +  1/2, i/'.2] c~, {2} reswcdvetv. :a the 
case of  basic spinors, i.e. when n = 0, it is well know:: tb.at the concomitants 
which are b,]inear in two bas~e ~pmors are m~e_m nan:c~ r, c0ns:s~mg o f ar~ 
invariant, a pseudo-invariant, a four-vector, a pse~.:do four-vector and a 
six-vector. When the basic spinors are made equal to give the co:~cemitants 
which ar.e quadra~ic in a single basic spinor, just the :~ur-vec~or and the 
six-vector surr TNs paper is concerned with the a~a!ysis of the higher- 
order case when n = I, i.e. when the spinor or spiaors are of  type [3/2, 1/2]. 

In order to ilIustrate later results, a particular re~erence frarrie is used~ 
Suppose that W and Z are two basic spinors and flaat ~ and th are two 
tensors of  tvpe r ~ = . , ds- Putting W ~ = ~ W a n d Z ~  ~hZ, then V~and Y~,where 
X ~ g, = 0 = X ~ Ir are .two irreducNIe spinors o f  type [3/2, I/2] where 
(Dodds, 1972) 

v,  = re, - x,( .v~ n5)14, Y, = z ,  - x,(x~Z~)/4. 0.3)  

Fe~ovAng L~tttewood (1969, 1972), the varticular reference frame is 
chos~en in which one of the basic spinors, Z say, is in canonical form. Hence, 
in this reference frmne, the basic spinors are giw--a by 

i f '= [~;#,r,~i, 2 = i~,0,0, 0l, 



where ~r, B, ?, ~ and e are real scalars. Writing 

~oA ~nd similarly, 

uNng (1.I) e~td (I.3) k fotkyw., s ~b_at 

g, = I[-'1~,/~,, c,, z),] 
~ y ,  where 

A, ~.--3~, + #~ +,h +/~o, 

G---3r,.= ~ + th§ ~o, 
D~ = 3&~ + 7~--  ~ + ~ ,  

and 

r 3s~ ] ! '3e2 + ~o 1 

1e2= �88 z~. ! ES J~ 

o J 
Also, since X l J:q = O, it follows thai 

Ax ~ B2 - D3 -- Bo = 0 ,  
Ct + D2 - B 3  - Do = 0, 

~ 3  

(~ .4) 

- B ~  - A2 - C3 + Ao = O, (! .~  
--D~ + Cz-- A~ + C~=O. " 

~ 

Suppose that L(+,+), L(+,-) ,  L(- ,+)  and L ( - , - )  represent Lerentz 
transformations belonging to the four separate'pieces" of the Lo rea ~z group, 
the first sign denoting the si~. oCthe de~crm/v.ant of the *~,~,,..i ~:u,~.--'~ .... mm~," ,, 
m a t r i x ,  w h i l s t  the second sign denotes v.,ned~er the transforr~a~ien leaves 
unchanged (+) or reverses (---) the direction of the time-axis. Beca:~se of the 
differing properties portrayed by the basic spin matrix corresponding ~o a 
transformation L,+,-r), L(+,-) ,  L( - ,+)  and L(-,--), (see, for exampte, 
Dedds, !97!b)~ it ~s c.o~venient, in~t)aHy, to consider z t ~ n s f e ~ a t i o n  



~g4 Bo l ~ u D ~  

�9 L(+, +)~ the ext~si~n ~o the lull Lo rcntz ~-oup being gi~e~ at the conclusion 

C, or, sider- then a transformation L(4,+),  x~ ~ r x~ ~ y .  The corre~ 
STranding basic spin matrix is U where 

fDodds, 1971b) 
U -I = - T ~ T  (2.2) 

~TU = L U~= tbU, 

where Xo--- T a n d  X~ X= ~ A'o = q~. Under L(+,+),  

The types of  the second-order eoncomi'~anLs a ~  de*ermined by 'chame- 
te'ristic analysis ~, for a full acco,an~t of  the methods o f  which oze is referred 
to LiRlewood, I944~ and _19_50, p. 288 et seq. Since 

{1}~= [3/2, ! , ~ ] +  a .  

where A = [I/2, 1,~1, it f0Row~ ~:~a,* 

[3/2, 1]'21 = f i l l -  ~)~ 
The types of  the concomitants which are hiime.&': i~ ~a.,o spinors of  ty-pc 
~ :2 ,  !/2] correspond to the product [3/2, 1/2]{3/Z tl~], v, here 

..... ~'~ s  " - -  1)~: 

=~ ({2} + { l ~ -- 2{ 1 } + 1) (2{0) + 2{ 1 ) + (1 ~}) 

= {31} + [:~}+~(.a) + ~{2I} + {>'} + ( o } -  ~{~} 
(sin~ {21 ~} = {2} + {I ~} -- {0} and {P} = {0} here) 

= [311+ [221 + 2[3] + 2D, I j + 212J 4- 2[1 z] 4 211] + 2[0]. 

(2.3) 
As a check~ the L.H.S. contains (12) 2 = 144 terms, whiIst :he R. H.S. contain~ 
30 + 10 + 2(t6) + 2(!6) + 2(9) + 2(6) + 2(4) -:-- 2(1) = I ~  terms as required. 

The types of  the concomitants which are quadratic in a single spinet of 
type [3/2, 1/2t correspond to the product [3/2, !/21 g {2), where 

[3/2, 112] | {2} = ({l}a - a) | {2} 

= ({:}a).,~ (o}a | {1 =} - ({1},~) | {:)a | {:} 
+ ({l}a) | (2} a | {o} 

= ,.t | {i 2} - { I } A  a + ((l} A) | {2}�9 

= a | {1 = } - { 1 } a  = + ( 1 }  | {2}a | {2} 
+ 0 }  | {l=}a | {1 =} 

= 2{0} + {1} -- {1} (2{0) + 2{1} + {12}) + {2} ({1} + {1 a}) 
+ {12} (2{0} + {1}) 

= {31} + {3} + {21} + {I z} + {0}--  {2} -- {1}- 

- -  t - ' "  ~ + . . . .  " (2.4) 



As a check, the L.H.S. contains (I2~/I~t|  !~-(12.~/2. '10!)= 78 t ~ S ,  
whilst the R.H.S. contains 30 + . . . .  t6-~ 16 ~ 2(6), 4.. 4. = 78 ~ s  ~ r,~m~,',,~.~ 

Having obtained the Uy-pes of t~e second-order concomitants, it remains 
to determine explicit f on . s  for them. This is done by considering quantit i~ 
of  various rank which are bilinear in the spinors ~'-~ and !~. In ~hese con- 
siderations, one is only interested in those, quantities which are both non- 

of the  ~ , o  contrac*ions g~ I~ = O-= X ~ Y~, from wNch follow the formulae 

P*rx, x:x,  =2(Qrrx,- e, rx ) 

together with sirmqar formulae for I~. Note that the mat~x r may be 
introduced into the above f o ~ o ! a e ,  s m ~  r an~commutes wit:~ each of 
the 2",. 

Quantities of ~,ank zero are considered first. Ti~ere are just two suc~ 
~uantities, non-zero and irreducible, viz. ~'*TY~ and ~ T 6 ~ ~ .  Afte~ 
t y ~  ss ,rmation,- 

where 0 :2 )and  ~2=2)have -~c~ used. S,m~,~ny,: "'- ' 

since, from (2.2), r  US. Hence bo~.h ~* T'V~ and .~Td.. ~ e  ~mp,.e~e 
tensors of  rank zero. 

Considering next quantities ofrank one, there ~ejugt  t ~o s~:ch quaati~de~, ~ 
viz. ?~TX~ V~ and ~'~TX~r V r After transformation, 

?" TX, W tTTX, L C rva, " x, : ?or:t; 

where (1.2), (2.1) and (2.2) have been used. S~m~arly, ~PTX,r 
aZ'~'rTX, dpV~,, and hence botl~ Y~'TX, V~and :?~TX~r are complete 
tensors of rank one. 

Considering nex.t quantities of  rank two, there are jus~ four such quanti- 
ties, viz. ?~T.u Y'TX~X~V~, F~TI~3 and LTCV~, each ofwhich~ 
in the manner of the preceding cases, is found to be a complete tensor of 
rank two. Similarly there are just two compiete.tensors of rank three, viz. 
I~TX-~ V, and ~'~TX3~pV,. and just two complete tensors ~f rank four, viz. 
~,TX~.u and f',TX~Z~fV,. All quantities of rank >4 are either 
identically equal to zero or are reducible to " *'*;- q~an,~..~s already considered 
of  ~ank <4. 

Twelve complete tensors of  various ranks are thus obtained from which 
the concomitants are t o  be constructed. In constructing simple tensors  
from t h e e  complete tensers, since ,,,,," i~ m four dimensions, it is only 



~cesmry to co~ider pAriiticms into not more tbaJ~ two parts~ It is eon~ 
~ - m t  to ..,~-'.*.~ for ex~_mp!e, ~'@~ co~!c~m__ilant of  L vpe~ 13!1((/~:,p)' ~s 
shorthand for 'the concomitam oftype [31] corresponding to the stendard 

Young Tableau ( i J  k'~" 
~p ! ~ 

"[he concomitants which are linear in each of  t'~ and 1;'f are considered 
fIr~l. Tl~ey are feeal~een in number, tKeir types being given by the characte~ 
~ o n  (2_3). Tl~e concomitants of type [01 and [1] are just the complete 
~-~so~ of  rlinks zero and one x'espectively. The concomitants of types [2] 
alxl [1 =] al~ obtained from the compIete tensors of rank two by operating 
on the tens~rs with the necessary symmetdsing operators to give simple 
tensors of  types {2} aM {12} = [1:]. Removal of  the contraction with the 
metric ~nmr  from the simple tensors of type {2} wilt yieid simple tensors 
of type [2] as reliuired~ Note that sin~ JL X, is skew-~metric, ~o term 
of ripe [2] is obtained from either ~TX,  X~ i:~ or f~'TX, X~$ ~(~. Further, 
since XtXJ? is exactly and precisely ~he dud! ofXt g~, when the te~sors of 
type [12] are being constructed, it is not necessarj m consider both ofthr 
complete tensors ~PTX~ Xj V~ and x] ' rx t  :dj$ V~ since the to,sot of ~ y #  
[12] constructed from the latter will be simply the dual of the tensor cf:ype 
[IZi ra~0~,~,~ie: r~om the former. The concomitants of  types [3] and [211 
~ r o n s ~ l e f l  f~:~ ?he complete tensors of rank three by a similar process 

rnetn ~ensor. Note that corre- o1"symmetrisation and ~Jontr~etion ~qth the "c �9 
spondi~  to the parth~on ~1), there are t~:~;= s~ndard Young Tableaux, 
viz. (ij, k) a~d (ik.j), and hence two corresponding~mme~rising operators 
(see, for example, Dodds, 197Ia,'Appendix), Finally the concom~*ants of 
type [31] and ['2-'] a ~  constrained from the complete tensors ofrae~k fr~ur, 
viz. ~iTX~Z~V, and ~,TX:X~4)V~. Note firstly tlnat there is no coi~, 
comitant of  type [4] because X3 X~ is skew-symmetric. Secondly, in con- 
stl~cting the concomitants O f type [311 and i2:], it is oniy n e c e s ~  to 
consider one of the complete tensors of rank four, ~ TX~ X~ V~ say, since 
the second one wN merely yield the duals of the tensors of types [31] and. 
[221 constructed from ~TX~X~ V~, XjX,$  being the dua! of XsX~ as 
mentioned previously. Thus the concomitants of tv~pes [31] and [2-'] are 
constructed from [:~T_u165 by the process of symmetrisation and 
contraction vdth the-metric tensor. Note that corresponding to the parti- 
tions (30 and (22 ) there are three and two standard Young Tableaux 
respectiveiy, viz. (ijk;p), (lip, k), (ikp,j)i and (ij, kp), (ik, jp), and hence 
three and two corresponding symmetrising operators (see Dodds, 1971a, 
Appendix). It is found however ~hat the concomitant of  type [3i](Uk,N 
is idendcNly zero. A final note, formulae (2.5) are used frequently in 
removing the contractions with the metric tensor from the various tensors. 
The concomitants which are linear in each of Y~ and V~ are thus as follows: 

[O]:F= f~TV~, +F; _ [ l ] : a ~ =  ~rx~g~' +G~; 



p~}: x,j, = k( ~', T:~5 v~ - L Tx,  v, + ~j r.~; v,  - ~, TX, vT~. 
�9 L,~,=k(F, TX)v,- ~-jTX, V,+ Y k T X : V , -  ~ ,TX,  V,). 

- -~(gug,~ + gJ,,g~ + g,,**j)F~ 

-k(g:,J,,, + gM~., + g~_J,O-~g,,.. Hj, + g~.Hj, 

+ g,, H : 9 ,  A(g,, 6 ,+ g , ~ ,  + g,, xj3 
-- aXc(gki gJp -~- g~F gJ~ + g~ gj~) F; 

I~",: ::,~, = &(~, TXj X, V, + ?, TXj ~; V~ + L rX~ a~ V, 

+ ~,~T.x,y., V, + ~,TX~X~ v,) 
+ ~ ( g u l ~  + g,,J,;~. - -  ~(Ej*Jo, + g~l J~j + gt, Jj* + gr.jJ*,) 

Q,~, = ~(. ?, rx j  x,  v,  + L rx,  x; v~ + ~,rx,.r, v, 

where _R'~j~ emd +K~,j~ are of LvTe [21] (/.i, k), L~j.~ and ~Lt:~_ are of type 
[21](ik, j),  whilst R~j~, S~2.,~, N~*; and Q~,~ are of types [31](ijp, k). 
[31 ] (/kp, j) ,  [2 el (ij, kp)and [22] (ik, jp) respectively. 

Firstly, note that permutation operators P appear in the forms given for 
the concomitants of types [2] and [~], the operators being defined as 
follows: A permutation operator Pq. . . . ,  operating oa a tensor Fq...~, 
say denotes the 6peration of taking the arkhmetic mean of the n! tensors 
obtained_ by permuting the suffixes o f  Fq: . . , .  in aH ways. Note also that 
the formula X~ X / +  X.tXI = 2gej has been usedin expressing Rij,~, Sej~, 
N~3,~ and Q~-,;in the forms giyen, This expla.;ns the presence of ~he Fterrhs 
in R~j~ and SU, ~. Finally, the ov~ratlon denoted by '+' on a tensor requires 
the insertion of $ immediately prior to a V, term wherever such a term is 
presetit in the tensor, e,g. § = ~'~T~'~Ve. Since ~b z = -1,  the oPeration 
*++' on a tensor gives the or.;glnal/easot together with a sign reversal, 

i7 



�9176 ~ § As noted prev.~ously, the lensors § ~'P,.,j~ +Su,~, "Nu~ ~ 
argl +Qu~ are jus~ ~he dual.tens~rs u)-* ~u~' J~u~," S~,,k~ ~ and ~o~re~ 
reN)ecfively, the dual tensors, where they exist, being defir~ed shortly. 

T h e  characte,-qstic anal~r~is required fourteen cor~comitants~ wher~s  
nineteen, as given by (2.6), have been found. It  is necessary to defir~e certain 
dual ~r~sors in order to resoIve this disc~epancT: Define the dual tensors 

* S u ~ = : t { g ~ , ~ g ~ , E ~ - i - g ~ g ~ , t E .  :' ~ ~ E ~ S  ~ 

~ad ~t~r  ~" ~" t~m- _ alternating tensor, which is defined to be equal ~._~ + i  ~f 
( i , j , k , p )  is a positi~,e permutation of  (1,Z3,0),  equal to - !  ] f a  aeg~tive 
perrnutaNe~ a~d equa~ t~ zero if any suffix is repeated. The duaI tensor ore  
tensor ~s of  course of the same type as the e6~inal tensor. The above dual 
tensors are easily seen to define tensor~ of  "~'-;~: required types. The dual 
t e ~ o r s  *+B'~I, *+I~.~, etc. are defi~ed ~5" a similar manner, e.g. *+H u = 

" - +  q r  �89 H . Clearly, the operations denoted by %" a~d '*' oh a teasor are 
~ m m u t a t i v e  and thus, for example, *+u  - + , ~  r .  ' - *'~ .... no-, *; 
"**', where applicable, on a tensor gives the or~ma.,.. ~e~sor ~,#, .  "~. ' w.~th 
a sign reversal: 

Condder  K~:~, then asing the definition for *K~. .  

= ~(g,, E:.; + g.,~ E,,,.) g,," g"" :" *~.~,,,,. 
g' (g,.  ~ , - , ,  ~ + g .  E , w  ~ . ) K  ~ 

- - 2 - ~  e - 

- -  2 g ~ ( g , .  g ~  - g , ,  g~,~) + g~" Ea~, E~,.,,,,} K ' '~ 
since 

] = -2ga(g~,. g~. - -  gs .  g~.,), 
~g,,~Es~,,,g ~ g~ g~ g , . , E ~ , . . . , , , - g  E , , , . E a . . ~ ,  
[and  skmHarly for the other two term.s. 

Further, 

g,,~" t: E K ~ g " ' E . . ~ E . . ~ , , , ~ K  ~'~ 

g.t~.g~ g;,, - -  g.n g~, g:,, 

--  g j ,  g ~  gn)  K t~'n 

= - t g . , m  g ~  g u  - -  g ~ , , g ~  g u )  , 



and ~imilariy, 

Hence, 

2 g ~ , ( g m g ~  - g ~  g ~ )  - ( g ~  g ~ g ~  *~ g**g~,g,j)}  K *'~ 

Hence, 

as required. Corresponding r~ults for other concc, mhants, where app!icab|e, 
~ be proved in a similar manner. 

Using the particular reference frame described in the introduction, 
~ogeii'~r w~;tb G~e various definitions, the following dependency relations 
are obtained: 

LOT , = *+L~s~, 

N ~ ,  + Q ~ ,  = O, 

�9 I,~ = 2(*/4"tj + + H . ) ,  

�9 ~ . ~  - + K o ~  = 2*Lf~l, 

where the reIa•ons on the right are the duals o f  the co~esponding relations 
on the left. In illustration, consider the second re~a~io~ on the right, viz. 
*Kzl~ - +Ku~-- 2*Ll~ = 0 .Take i=- l ,  j = 0 and k = 3 say. By definition, 

*K~o3 = ~(~03,, K ''~ - El , , ,  K ~ = i ( - G , ~  + K~ 2, + ~ ,  - ~ ) -  
But 

Kt2i -- - ' ~G  12 and Ko2o = ~-42K~~ 
Hence, 

*Kio3 = - ~ .  "Kin + Koo:). 
Similarly, 

*Lt2m = L i t -  + r . a - ~ O 0 2 .  

Hence, 

*Kloa -- +Klo~ -- 2*Llao -- -�89 + Koo2) - ~'Klo3 -- 2(Lt12 +I-oo2) 
=-q{(~, TX, v, - ?, Tx, v3 ~+ (-?o v. + ?~ Vo) 

+ 2 ( ~  TX, Vt---~, TX2 I:,) + 2(~2 TXo V o -  ~oTX2 V,)} 

= 0 (using (1.5)). 

Other suffixes may be cho~n #r ing  h similar zero result, and hence 



In the light o f  dependency relatio.s (2.8), it iS seen that just fourteen of 
the nineteen concomitants, as ~iven by ~.6), are b..dependent, thus agreeing 
with the c a n e r  characteristic analysis. The foun.een coneomiu~nts a r e  
taken robe 

as gg~a  explicitly in (2.6). 
The ~ncomi ta  nts whida am quadr~,~.'.e in a sin gle sp~nor ,~ftype [3/2~ !/2] 

are now determine .  From. ~ e  earlier cbaracteris~c ~.nalysL% (2A), d~ey 
�9 are six in number, one each o f~pe~  [3IL [3L [2t], [t] and two o f type  [1 ~] 
Explicit forms for these concomitants are obtained, quite simply, by 
putting Y~ = Vl in each of  the concomitants wi-A~ are b i l in~r  in ~ and 
P) just obtained. Since 

[3f2, 1/21 | {2} = [3 i1+ [3] + [211 + 21121 + [~1 
and 

[312, 1(/2] @ ( ; r~=  [2-'1 + [3] + [21] + 2[2] + [11 + 2[0] 

~ e  eh~acter  eqtlatiort (2.3) :may ~ rvwd~en in the form 

1W2, ]/2]D/Z, U~] = [3/2, 112I | {2} + [3/2, Lr~] | {iz~ 

The . . . . . .  concomitants which correspond to [3~(2, 1/21 | ~2} are s?xnmm~e in 
the two groundforms and hence survive when the g r o u n d l e s s  are made 
equal. On the other hand, the concomitants which correspond te [3/2, 1/2] 
| {I a} are skew-symmetric in the groundforms and will thus become zero 
when the grotmdforms are made equM. it  is easiIy seen that the con- 
comitants which are skew-symmetric in the sp]nors are F, ~ +G, J~, 
+Y~, Kt~, +M~ and r~]:~r, all of  which wil! thus become identica!!y zero 
when the Spinors are made equal. The concomitants which are quadratic 
in a single spinet of  type [3/2, 1~] are thus as follows: 

0]: G,= ~TX,  V,; [i:]: H,~=k(f, rV~- ~rV,),  +~,j; 

[3]: M,,,  ---- Pro(if, TXj V~ -- ~;g,~ G,); �9 (2.9) 

[3H: ':: 
+ 17~TX, .I", V, § Vj) 
+ ~-~(g~ H~ + gj~ H~ + g~ g~) 
+~(g,.,t,,; +g~,,~,,~ + g., I . ) ;  

where here, 

l,j = �89 T(X, 2 5 -  Zj X0V~ = 2(H,~ - *+~,3; 

The concomffants in both instances are "1 - . " ; ~ ; tlaus exphc.t!y de~errmn~d, and 
one is now in a position to remove the restriction, applied earlier in the 
anM~tcic nf rnncide~rin~ nnly I .rive.niT: tra~Sfo~nt[nn~ [.(_~_ ~'I. ,f irY ic n~, 



bas~e~pinmatrix corresponding" t ~ " ." ~ "" ' ~o a orang.formation fi) L(4,---), (I!) L( - ,+) ,  
(iii) L(--,~), then 

tr-~ = rgT;  /TTV---.T, t ie  = e u ;  
fu3 o'-~ =--TOT, gtrZT= ;r, ~rr = --r 
(ii~3 v-~ --- r o t ,  0 r v  = - r ,  v~ =-r 

(eft (P.~))o In the | i g~  ofIhese rdmS~ns, ey.~ct.~.y whi_~_ of*.he concomitants 
are o f  the pseudo-type corresponding Io a particular Loren~  t r~s forma-  
lion is easily determined, hence extending the analysis to the full Lorentz 
group. Thus,  corresponding to a transformation (0 L(%--), (ii) L(=,-I:), 
(iiO z~---,-), 

~) all  office ec~.cc.mitants are of the pseudo-type; 
0i) e-F, +G~, +H~, *J~, + K ~  +M~.~ are of  the pseudo-type; 

.f~3 F ,  G~ t~,~r~,  K t ~  ~ . ,  ~ 4 ~  Ro~ ~ are of  the pseudc~type.. 

Fo r  example, under a transforma~io~ L(--,--)~ ~ ?~'  :n~ o~ly transforms �9 
a ~ s ~ r  o f  D?~e I1~], it also und~.rgoes a ~ a n g e  in ~iga.. 

. 32~e-Concomi~ants of  higher-oMer spinors c~n be analysed i~ an e~c~.!y 
similar m a n ~ .  
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